
CSE 40175: Ethical and Professional Issues Dylan Zaragoza
Project 05: Computer Science Education May 6, 2016

1

Option 1: Computer Science Curriculum

1. What are the strengths and weaknesses of the CSE program?

Just like any other school, earning a Computer Science degree at the University of Notre Dame

has its own strengths and weaknesses. As freshmen (and freshwomen), the only real college

specific course engineering students are required to take is Introduction to Engineering (I in the

Fall and II in the Spring). Looking back at it now (without rose-tinted glasses), this first-year

course diversity can be as much helpful as it is harmful. On one hand, the atmosphere is very

welcoming and doesn’t pressure students into any particular major. Its flexibility allows them to

fulfill general University requirements up front, and even budgets room for some inter-college

mobility going into a student’s second or third year. The drawback, however, is slower-than-

average pacing when compared to other universities of the same level. Some students, such as

myself, who applied to Notre Dame with full intentions of majoring in Computer Science may have

even felt like they did not learn anything new (other than exposure to MATLAB) their freshman

year. On the other end of the spectrum, there is some controversial discussion about the order of

some junior and senior level required courses and whether or not it is placing Notre Dame

students at a disadvantage when it comes time for job interviews.

2. What courses would you add, remove, modify?

While Sophomore year introduces C and C++ programming in Fundamentals of Computing (as

well as Discrete Math, Logic Design, and just recently, Unix), I cannot help but feel as though the

curriculum does not give freshmen (and freshwomen) enough credit to be able to grasp some of

these concepts a year earlier. It may just be because I had some experience programming in high

school, but I earnestly believe students of Notre Dame caliber can begin learning C and C++ (or

even Unix) during their freshman year if given the opportunity and reason to do so. Removing

Introduction to Engineering and shifting some of these topics down to freshman year would also

allow this faster pace to trickle down from higher level classes. Data Structures could move from

junior to sophomore year and Algorithms from senior year to junior year. This would also address

the issue of covering both Data Structures and Algorithms in time for upperclassman internships

and interviews.

3. What skills or technologies need more coverage?

There are many courses I took as technical electives that I feel should at least be common

knowledge for every computer scientist. Networking, security, and cloud computing may have

more to do with networking than programming itself, but in the twentieth century I feel one would

be hard pressed to find a computer-related job that has absolutely nothing to do with networking

(or clouds). Learning programming in a vacuum without any exposure to networking would be like

learning about the parts of a car and how to drive, but not the rules of the road or how to read

signs. To tell the truth though, I’m finding it difficult to place these courses in the Notre Dame CS

curriculum without replacing either 1) Philosophy or Theology (not likely since these are

University requirements), 2) Technical Electives or 3) Free Electives. I’m not sure replacing the

freedom electives give would be well received either, but at the very least I feel some exposure to

networking should be mandatory.

CSE 40175: Ethical and Professional Issues Dylan Zaragoza
Project 05: Computer Science Education May 6, 2016

2

4. What are some projects or assignments that students should experience?

I’m not sure I would significantly change the final project for any particular course. Most projects

incorporate elements of real world computer science in their design, including working in a team

and seeing a product through from concept to implementation to presentation. Some students are

skeptical of the learning value of the open source final project for Data Structures, but I believe it

represents another important aspect of the Computer Science profession: a lot of the time we are

called upon to build on top of (or fix) already existing systems. Having to wade through another

programmer’s code (and sometimes without documentation or reference) is less a possible

situation than an eventual one, so contributing to an open source project gives students some

much (under)appreciated exposure. Admittedly, the rubric for the project should probably be

changed a bit to more closely reflect the topic of the class, but I stand by my opinion that it should

be kept a part of the undergraduate experience.

5. What can faculty and staff do to improve the program?

My undergraduate experience as an engineer at Notre Dame was all I could have hoped for. As

far as I am concerned, the faculty and staff of the Computer Science program did their job of kick

starting a lifelong programmer. To be perfectly honest, even while singing praises of the staff I

cannot think of a single improvement to suggest (other than the curriculum changes mentioned

above). The sense of faith and camaraderie I’ve gained here will stay with me for many years to

come, both as a programmer and as a person. And I wouldn’t replace that feeling with anything.

